LCOV - code coverage report
Current view: top level - raid - raid.c (source / functions) Hit Total Coverage
Test: lcov.info Lines: 123 123 100.0 %
Date: 2017-11-06 22:14:04 Functions: 9 9 100.0 %

          Line data    Source code
       1             : /*
       2             :  * Copyright (C) 2013 Andrea Mazzoleni
       3             :  *
       4             :  * This program is free software: you can redistribute it and/or modify
       5             :  * it under the terms of the GNU General Public License as published by
       6             :  * the Free Software Foundation, either version 2 of the License, or
       7             :  * (at your option) any later version.
       8             :  *
       9             :  * This program is distributed in the hope that it will be useful,
      10             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      11             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      12             :  * GNU General Public License for more details.
      13             :  */
      14             : 
      15             : #include "internal.h"
      16             : #include "gf.h"
      17             : 
      18             : /*
      19             :  * This is a RAID implementation working in the Galois Field GF(2^8) with
      20             :  * the primitive polynomial x^8 + x^4 + x^3 + x^2 + 1 (285 decimal), and
      21             :  * supporting up to six parity levels.
      22             :  *
      23             :  * For RAID5 and RAID6 it works as as described in the H. Peter Anvin's
      24             :  * paper "The mathematics of RAID-6" [1]. Please refer to this paper for a
      25             :  * complete explanation.
      26             :  *
      27             :  * To support triple parity, it was first evaluated and then dropped, an
      28             :  * extension of the same approach, with additional parity coefficients set
      29             :  * as powers of 2^-1, with equations:
      30             :  *
      31             :  * P = sum(Di)
      32             :  * Q = sum(2^i * Di)
      33             :  * R = sum(2^-i * Di) with 0<=i<N
      34             :  *
      35             :  * This approach works well for triple parity and it's very efficient,
      36             :  * because we can implement very fast parallel multiplications and
      37             :  * divisions by 2 in GF(2^8).
      38             :  *
      39             :  * It's also similar at the approach used by ZFS RAIDZ3, with the
      40             :  * difference that ZFS uses powers of 4 instead of 2^-1.
      41             :  *
      42             :  * Unfortunately it doesn't work beyond triple parity, because whatever
      43             :  * value we choose to generate the power coefficients to compute other
      44             :  * parities, the resulting equations are not solvable for some
      45             :  * combinations of missing disks.
      46             :  *
      47             :  * This is expected, because the Vandermonde matrix used to compute the
      48             :  * parity has no guarantee to have all submatrices not singular
      49             :  * [2, Chap 11, Problem 7] and this is a requirement to have
      50             :  * a MDS (Maximum Distance Separable) code [2, Chap 11, Theorem 8].
      51             :  *
      52             :  * To overcome this limitation, we use a Cauchy matrix [3][4] to compute
      53             :  * the parity. A Cauchy matrix has the property to have all the square
      54             :  * submatrices not singular, resulting in always solvable equations,
      55             :  * for any combination of missing disks.
      56             :  *
      57             :  * The problem of this approach is that it requires the use of
      58             :  * generic multiplications, and not only by 2 or 2^-1, potentially
      59             :  * affecting badly the performance.
      60             :  *
      61             :  * Hopefully there is a method to implement parallel multiplications
      62             :  * using SSSE3 or AVX2 instructions [1][5]. Method competitive with the
      63             :  * computation of triple parity using power coefficients.
      64             :  *
      65             :  * Another important property of the Cauchy matrix is that we can setup
      66             :  * the first two rows with coeffients equal at the RAID5 and RAID6 approach
      67             :  * decribed, resulting in a compatible extension, and requiring SSSE3
      68             :  * or AVX2 instructions only if triple parity or beyond is used.
      69             :  *
      70             :  * The matrix is also adjusted, multipling each row by a constant factor
      71             :  * to make the first column of all 1, to optimize the computation for
      72             :  * the first disk.
      73             :  *
      74             :  * This results in the matrix A[row,col] defined as:
      75             :  *
      76             :  * 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01...
      77             :  * 01 02 04 08 10 20 40 80 1d 3a 74 e8 cd 87 13 26 4c 98 2d 5a b4 75...
      78             :  * 01 f5 d2 c4 9a 71 f1 7f fc 87 c1 c6 19 2f 40 55 3d ba 53 04 9c 61...
      79             :  * 01 bb a6 d7 c7 07 ce 82 4a 2f a5 9b b6 60 f1 ad e7 f4 06 d2 df 2e...
      80             :  * 01 97 7f 9c 7c 18 bd a2 58 1a da 74 70 a3 e5 47 29 07 f5 80 23 e9...
      81             :  * 01 2b 3f cf 73 2c d6 ed cb 74 15 78 8a c1 17 c9 89 68 21 ab 76 3b...
      82             :  *
      83             :  * This matrix supports 6 level of parity, one for each row, for up to 251
      84             :  * data disks, one for each column, with all the 377,342,351,231 square
      85             :  * submatrices not singular, verified also with brute-force.
      86             :  *
      87             :  * This matrix can be extended to support any number of parities, just
      88             :  * adding additional rows, and removing one column for each new row.
      89             :  * (see mktables.c for more details in how the matrix is generated)
      90             :  *
      91             :  * In details, parity is computed as:
      92             :  *
      93             :  * P = sum(Di)
      94             :  * Q = sum(2^i *  Di)
      95             :  * R = sum(A[2,i] * Di)
      96             :  * S = sum(A[3,i] * Di)
      97             :  * T = sum(A[4,i] * Di)
      98             :  * U = sum(A[5,i] * Di) with 0<=i<N
      99             :  *
     100             :  * To recover from a failure of six disks at indexes x,y,z,h,v,w,
     101             :  * with 0<=x<y<z<h<v<w<N, we compute the parity of the available N-6
     102             :  * disks as:
     103             :  *
     104             :  * Pa = sum(Di)
     105             :  * Qa = sum(2^i * Di)
     106             :  * Ra = sum(A[2,i] * Di)
     107             :  * Sa = sum(A[3,i] * Di)
     108             :  * Ta = sum(A[4,i] * Di)
     109             :  * Ua = sum(A[5,i] * Di) with 0<=i<N,i!=x,i!=y,i!=z,i!=h,i!=v,i!=w.
     110             :  *
     111             :  * And if we define:
     112             :  *
     113             :  * Pd = Pa + P
     114             :  * Qd = Qa + Q
     115             :  * Rd = Ra + R
     116             :  * Sd = Sa + S
     117             :  * Td = Ta + T
     118             :  * Ud = Ua + U
     119             :  *
     120             :  * we can sum these two sets of equations, obtaining:
     121             :  *
     122             :  * Pd =          Dx +          Dy +          Dz +          Dh +          Dv +          Dw
     123             :  * Qd =    2^x * Dx +    2^y * Dy +    2^z * Dz +    2^h * Dh +    2^v * Dv +    2^w * Dw
     124             :  * Rd = A[2,x] * Dx + A[2,y] * Dy + A[2,z] * Dz + A[2,h] * Dh + A[2,v] * Dv + A[2,w] * Dw
     125             :  * Sd = A[3,x] * Dx + A[3,y] * Dy + A[3,z] * Dz + A[3,h] * Dh + A[3,v] * Dv + A[3,w] * Dw
     126             :  * Td = A[4,x] * Dx + A[4,y] * Dy + A[4,z] * Dz + A[4,h] * Dh + A[4,v] * Dv + A[4,w] * Dw
     127             :  * Ud = A[5,x] * Dx + A[5,y] * Dy + A[5,z] * Dz + A[5,h] * Dh + A[5,v] * Dv + A[5,w] * Dw
     128             :  *
     129             :  * A linear system always solvable because the coefficients matrix is
     130             :  * always not singular due the properties of the matrix A[].
     131             :  *
     132             :  * Resulting speed in x64, with 8 data disks, using a stripe of 256 KiB,
     133             :  * for a Core i5-4670K Haswell Quad-Core 3.4GHz is:
     134             :  *
     135             :  *             int8   int32   int64    sse2   ssse3    avx2
     136             :  *   gen1             13339   25438   45438           50588
     137             :  *   gen2              4115    6514   21840           32201
     138             :  *   gen3       814                           10154   18613
     139             :  *   gen4       620                            7569   14229
     140             :  *   gen5       496                            5149   10051
     141             :  *   gen6       413                            4239    8190
     142             :  *
     143             :  * Values are in MiB/s of data processed by a single thread, not counting
     144             :  * generated parity.
     145             :  *
     146             :  * You can replicate these results in your machine using the
     147             :  * "raid/test/speedtest.c" program.
     148             :  *
     149             :  * For comparison, the triple parity computation using the power
     150             :  * coeffients "1,2,2^-1" is only a little faster than the one based on
     151             :  * the Cauchy matrix if SSSE3 or AVX2 is present.
     152             :  *
     153             :  *             int8   int32   int64    sse2   ssse3    avx2
     154             :  *   genz              2337    2874   10920           18944
     155             :  *
     156             :  * In conclusion, the use of power coefficients, and specifically powers
     157             :  * of 1,2,2^-1, is the best option to implement triple parity in CPUs
     158             :  * without SSSE3 and AVX2.
     159             :  * But if a modern CPU with SSSE3 or AVX2 is available, the Cauchy
     160             :  * matrix is the best option because it provides a fast and general
     161             :  * approach working for any number of parities.
     162             :  *
     163             :  * References:
     164             :  * [1] Anvin, "The mathematics of RAID-6", 2004
     165             :  * [2] MacWilliams, Sloane, "The Theory of Error-Correcting Codes", 1977
     166             :  * [3] Blomer, "An XOR-Based Erasure-Resilient Coding Scheme", 1995
     167             :  * [4] Roth, "Introduction to Coding Theory", 2006
     168             :  * [5] Plank, "Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions", 2013
     169             :  */
     170             : 
     171             : /**
     172             :  * Generator matrix currently used.
     173             :  */
     174             : const uint8_t (*raid_gfgen)[256];
     175             : 
     176         541 : void raid_mode(int mode)
     177             : {
     178         541 :         if (mode == RAID_MODE_VANDERMONDE) {
     179           2 :                 raid_gen_ptr[2] = raid_genz_ptr;
     180           2 :                 raid_gfgen = gfvandermonde;
     181             :         } else {
     182         539 :                 raid_gen_ptr[2] = raid_gen3_ptr;
     183         539 :                 raid_gfgen = gfcauchy;
     184             :         }
     185         541 : }
     186             : 
     187             : /**
     188             :  * Buffer filled with 0 used in recovering.
     189             :  */
     190             : static void *raid_zero_block;
     191             : 
     192         208 : void raid_zero(void *zero)
     193             : {
     194         208 :         raid_zero_block = zero;
     195         208 : }
     196             : 
     197             : /*
     198             :  * Forwarders for parity computation.
     199             :  *
     200             :  * These functions compute the parity blocks from the provided data.
     201             :  *
     202             :  * The number of parities to compute is implicit in the position in the
     203             :  * forwarder vector. Position at index #i, computes (#i+1) parities.
     204             :  *
     205             :  * All these functions give the guarantee that parities are written
     206             :  * in order. First parity P, then parity Q, and so on.
     207             :  * This allows to specify the same memory buffer for multiple parities
     208             :  * knowning that you'll get the latest written one.
     209             :  * This characteristic is used by the raid_delta_gen() function to
     210             :  * avoid to damage unused parities in recovering.
     211             :  *
     212             :  * @nd Number of data blocks
     213             :  * @size Size of the blocks pointed by @v. It must be a multipler of 64.
     214             :  * @v Vector of pointers to the blocks of data and parity.
     215             :  *   It has (@nd + #parities) elements. The starting elements are the blocks
     216             :  *   for data, following with the parity blocks.
     217             :  *   Each block has @size bytes.
     218             :  */
     219             : void (*raid_gen_ptr[RAID_PARITY_MAX])(int nd, size_t size, void **vv);
     220             : void (*raid_gen3_ptr)(int nd, size_t size, void **vv);
     221             : void (*raid_genz_ptr)(int nd, size_t size, void **vv);
     222             : 
     223     1235761 : void raid_gen(int nd, int np, size_t size, void **v)
     224             : {
     225             :         /* enforce limit on size */
     226     1235761 :         BUG_ON(size % 64 != 0);
     227             : 
     228             :         /* enforce limit on number of failures */
     229     1235761 :         BUG_ON(np < 1);
     230     1235761 :         BUG_ON(np > RAID_PARITY_MAX);
     231             : 
     232     1235761 :         raid_gen_ptr[np - 1](nd, size, v);
     233     1235761 : }
     234             : 
     235             : /**
     236             :  * Inverts the square matrix M of size nxn into V.
     237             :  *
     238             :  * This is not a general matrix inversion because we assume the matrix M
     239             :  * to have all the square submatrix not singular.
     240             :  * We use Gauss elimination to invert.
     241             :  *
     242             :  * @M Matrix to invert with @n rows and @n columns.
     243             :  * @V Destination matrix where the result is put.
     244             :  * @n Number of rows and columns of the matrix.
     245             :  */
     246      172769 : void raid_invert(uint8_t *M, uint8_t *V, int n)
     247             : {
     248             :         int i, j, k;
     249             : 
     250             :         /* set the identity matrix in V */
     251      798364 :         for (i = 0; i < n; ++i)
     252     3221012 :                 for (j = 0; j < n; ++j)
     253     2595417 :                         V[i * n + j] = i == j;
     254             : 
     255             :         /* for each element in the diagonal */
     256      798364 :         for (k = 0; k < n; ++k) {
     257             :                 uint8_t f;
     258             : 
     259             :                 /* the diagonal element cannot be 0 because */
     260             :                 /* we are inverting matrices with all the square */
     261             :                 /* submatrices not singular */
     262      625595 :                 BUG_ON(M[k * n + k] == 0);
     263             : 
     264             :                 /* make the diagonal element to be 1 */
     265     1251190 :                 f = inv(M[k * n + k]);
     266     3221012 :                 for (j = 0; j < n; ++j) {
     267     5190834 :                         M[k * n + j] = mul(f, M[k * n + j]);
     268     5190834 :                         V[k * n + j] = mul(f, V[k * n + j]);
     269             :                 }
     270             : 
     271             :                 /* make all the elements over and under the diagonal */
     272             :                 /* to be zero */
     273     3221012 :                 for (i = 0; i < n; ++i) {
     274     2595417 :                         if (i == k)
     275      625595 :                                 continue;
     276     1969822 :                         f = M[i * n + k];
     277    11272530 :                         for (j = 0; j < n; ++j) {
     278    18605416 :                                 M[i * n + j] ^= mul(f, M[k * n + j]);
     279    18605416 :                                 V[i * n + j] ^= mul(f, V[k * n + j]);
     280             :                         }
     281             :                 }
     282             :         }
     283      172769 : }
     284             : 
     285             : /**
     286             :  * Computes the parity without the missing data blocks
     287             :  * and store it in the buffers of such data blocks.
     288             :  *
     289             :  * This is the parity expressed as Pa,Qa,Ra,Sa,Ta,Ua in the equations.
     290             :  */
     291      171901 : void raid_delta_gen(int nr, int *id, int *ip, int nd, size_t size, void **v)
     292             : {
     293             :         void *p[RAID_PARITY_MAX];
     294             :         void *pa[RAID_PARITY_MAX];
     295             :         int i, j;
     296             :         int np;
     297             :         void *latest;
     298             : 
     299             :         /* total number of parities we are going to process */
     300             :         /* they are both the used and the unused ones */
     301      171901 :         np = ip[nr - 1] + 1;
     302             : 
     303             :         /* latest missing data block */
     304      171901 :         latest = v[id[nr - 1]];
     305             : 
     306             :         /* setup pointers for delta computation */
     307      874239 :         for (i = 0, j = 0; i < np; ++i) {
     308             :                 /* keep a copy of the original parity vector */
     309      702338 :                 p[i] = v[nd + i];
     310             : 
     311      702338 :                 if (ip[j] == i) {
     312             :                         /*
     313             :                          * Set used parities to point to the missing
     314             :                          * data blocks.
     315             :                          *
     316             :                          * The related data blocks are instead set
     317             :                          * to point to the "zero" buffer.
     318             :                          */
     319             : 
     320             :                         /* the latest parity to use ends the for loop and */
     321             :                         /* then it cannot happen to process more of them */
     322      606053 :                         BUG_ON(j >= nr);
     323             : 
     324             :                         /* buffer for missing data blocks */
     325      606053 :                         pa[j] = v[id[j]];
     326             : 
     327             :                         /* set at zero the missing data blocks */
     328      606053 :                         v[id[j]] = raid_zero_block;
     329             : 
     330             :                         /* compute the parity over the missing data blocks */
     331      606053 :                         v[nd + i] = pa[j];
     332             : 
     333             :                         /* check for the next used entry */
     334      606053 :                         ++j;
     335             :                 } else {
     336             :                         /*
     337             :                          * Unused parities are going to be rewritten with
     338             :                          * not significative data, becase we don't have
     339             :                          * functions able to compute only a subset of
     340             :                          * parities.
     341             :                          *
     342             :                          * To avoid this, we reuse parity buffers,
     343             :                          * assuming that all the parity functions write
     344             :                          * parities in order.
     345             :                          *
     346             :                          * We assign the unused parity block to the same
     347             :                          * block of the latest used parity that we know it
     348             :                          * will be written.
     349             :                          *
     350             :                          * This means that this block will be written
     351             :                          * multiple times and only the latest write will
     352             :                          * contain the correct data.
     353             :                          */
     354       96285 :                         v[nd + i] = latest;
     355             :                 }
     356             :         }
     357             : 
     358             :         /* all the parities have to be processed */
     359      171901 :         BUG_ON(j != nr);
     360             : 
     361             :         /* recompute the parity, note that np may be smaller than the */
     362             :         /* total number of parities available */
     363      171901 :         raid_gen(nd, np, size, v);
     364             : 
     365             :         /* restore data buffers as before */
     366      777954 :         for (j = 0; j < nr; ++j)
     367      606053 :                 v[id[j]] = pa[j];
     368             : 
     369             :         /* restore parity buffers as before */
     370      874239 :         for (i = 0; i < np; ++i)
     371      702338 :                 v[nd + i] = p[i];
     372      171901 : }
     373             : 
     374             : /**
     375             :  * Recover failure of one data block for PAR1.
     376             :  *
     377             :  * Starting from the equation:
     378             :  *
     379             :  * Pd = Dx
     380             :  *
     381             :  * and solving we get:
     382             :  *
     383             :  * Dx = Pd
     384             :  */
     385      101555 : void raid_rec1of1(int *id, int nd, size_t size, void **v)
     386             : {
     387             :         void *p;
     388             :         void *pa;
     389             : 
     390             :         /* for PAR1 we can directly compute the missing block */
     391             :         /* and we don't need to use the zero buffer */
     392      101555 :         p = v[nd];
     393      101555 :         pa = v[id[0]];
     394             : 
     395             :         /* use the parity as missing data block */
     396      101555 :         v[id[0]] = p;
     397             : 
     398             :         /* compute the parity over the missing data block */
     399      101555 :         v[nd] = pa;
     400             : 
     401             :         /* compute */
     402      101555 :         raid_gen(nd, 1, size, v);
     403             : 
     404             :         /* restore as before */
     405      101555 :         v[id[0]] = pa;
     406      101555 :         v[nd] = p;
     407      101555 : }
     408             : 
     409             : /**
     410             :  * Recover failure of two data blocks for PAR2.
     411             :  *
     412             :  * Starting from the equations:
     413             :  *
     414             :  * Pd = Dx + Dy
     415             :  * Qd = 2^id[0] * Dx + 2^id[1] * Dy
     416             :  *
     417             :  * and solving we get:
     418             :  *
     419             :  *               1                     2^(-id[0])
     420             :  * Dy = ------------------- * Pd + ------------------- * Qd
     421             :  *      2^(id[1]-id[0]) + 1        2^(id[1]-id[0]) + 1
     422             :  *
     423             :  * Dx = Dy + Pd
     424             :  *
     425             :  * with conditions:
     426             :  *
     427             :  * 2^id[0] != 0
     428             :  * 2^(id[1]-id[0]) + 1 != 0
     429             :  *
     430             :  * That are always satisfied for any 0<=id[0]<id[1]<255.
     431             :  */
     432         132 : void raid_rec2of2_int8(int *id, int *ip, int nd, size_t size, void **vv)
     433             : {
     434         132 :         uint8_t **v = (uint8_t **)vv;
     435             :         size_t i;
     436             :         uint8_t *p;
     437             :         uint8_t *pa;
     438             :         uint8_t *q;
     439             :         uint8_t *qa;
     440             :         const uint8_t *T[2];
     441             : 
     442             :         /* get multiplication tables */
     443         528 :         T[0] = table(inv(pow2(id[1] - id[0]) ^ 1));
     444         660 :         T[1] = table(inv(pow2(id[0]) ^ pow2(id[1])));
     445             : 
     446             :         /* compute delta parity */
     447         132 :         raid_delta_gen(2, id, ip, nd, size, vv);
     448             : 
     449         132 :         p = v[nd];
     450         132 :         q = v[nd + 1];
     451         132 :         pa = v[id[0]];
     452         132 :         qa = v[id[1]];
     453             : 
     454       33924 :         for (i = 0; i < size; ++i) {
     455             :                 /* delta */
     456       33792 :                 uint8_t Pd = p[i] ^ pa[i];
     457       33792 :                 uint8_t Qd = q[i] ^ qa[i];
     458             : 
     459             :                 /* reconstruct */
     460       33792 :                 uint8_t Dy = T[0][Pd] ^ T[1][Qd];
     461       33792 :                 uint8_t Dx = Pd ^ Dy;
     462             : 
     463             :                 /* set */
     464       33792 :                 pa[i] = Dx;
     465       33792 :                 qa[i] = Dy;
     466             :         }
     467         132 : }
     468             : 
     469             : /*
     470             :  * Forwarders for data recovery.
     471             :  *
     472             :  * These functions recover data blocks using the specified parity
     473             :  * to recompute the missing data.
     474             :  *
     475             :  * Note that the format of vectors @id/@ip is different than raid_rec().
     476             :  * For example, in the vector @ip the first parity is represented with the
     477             :  * value 0 and not @nd.
     478             :  *
     479             :  * @nr Number of failed data blocks to recover.
     480             :  * @id[] Vector of @nr indexes of the data blocks to recover.
     481             :  *   The indexes start from 0. They must be in order.
     482             :  * @ip[] Vector of @nr indexes of the parity blocks to use in the recovering.
     483             :  *   The indexes start from 0. They must be in order.
     484             :  * @nd Number of data blocks.
     485             :  * @np Number of parity blocks.
     486             :  * @size Size of the blocks pointed by @v. It must be a multipler of 64.
     487             :  * @v Vector of pointers to the blocks of data and parity.
     488             :  *   It has (@nd + @np) elements. The starting elements are the blocks
     489             :  *   for data, following with the parity blocks.
     490             :  *   Each block has @size bytes.
     491             :  */
     492             : void (*raid_rec_ptr[RAID_PARITY_MAX])(
     493             :         int nr, int *id, int *ip, int nd, size_t size, void **vv);
     494             : 
     495         871 : void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v)
     496             : {
     497             :         int nrd; /* number of data blocks to recover */
     498             :         int nrp; /* number of parity blocks to recover */
     499             : 
     500             :         /* enforce limit on size */
     501         871 :         BUG_ON(size % 64 != 0);
     502             : 
     503             :         /* enforce limit on number of failures */
     504         871 :         BUG_ON(nr > np);
     505         871 :         BUG_ON(np > RAID_PARITY_MAX);
     506             : 
     507             :         /* enforce order in index vector */
     508         871 :         BUG_ON(nr >= 2 && ir[0] >= ir[1]);
     509         871 :         BUG_ON(nr >= 3 && ir[1] >= ir[2]);
     510         871 :         BUG_ON(nr >= 4 && ir[2] >= ir[3]);
     511         871 :         BUG_ON(nr >= 5 && ir[3] >= ir[4]);
     512         871 :         BUG_ON(nr >= 6 && ir[4] >= ir[5]);
     513             : 
     514             :         /* enforce limit on index vector */
     515         871 :         BUG_ON(nr > 0 && ir[nr-1] >= nd + np);
     516             : 
     517             :         /* count the number of data blocks to recover */
     518         871 :         nrd = 0;
     519        3487 :         while (nrd < nr && ir[nrd] < nd)
     520        1745 :                 ++nrd;
     521             : 
     522             :         /* all the remaining are parity */
     523         871 :         nrp = nr - nrd;
     524             : 
     525             :         /* enforce limit on number of failures */
     526         871 :         BUG_ON(nrd > nd);
     527         871 :         BUG_ON(nrp > np);
     528             : 
     529             :         /* if failed data is present */
     530         871 :         if (nrd != 0) {
     531             :                 int ip[RAID_PARITY_MAX];
     532             :                 int i, j, k;
     533             : 
     534             :                 /* setup the vector of parities to use */
     535        6048 :                 for (i = 0, j = 0, k = 0; i < np; ++i) {
     536        5179 :                         if (j < nrp && ir[nrd + j] == nd + i) {
     537             :                                 /* this parity has to be recovered */
     538          22 :                                 ++j;
     539             :                         } else {
     540             :                                 /* this parity is used for recovering */
     541        5157 :                                 ip[k] = i;
     542        5157 :                                 ++k;
     543             :                         }
     544             :                 }
     545             : 
     546             :                 /* recover the nrd data blocks specified in ir[], */
     547             :                 /* using the first nrd parity in ip[] for recovering */
     548         869 :                 raid_rec_ptr[nrd - 1](nrd, ir, ip, nd, size, v);
     549             :         }
     550             : 
     551             :         /* recompute all the parities up to the last bad one */
     552         871 :         if (nrp != 0)
     553          12 :                 raid_gen(nd, ir[nr - 1] - nd + 1, size, v);
     554         871 : }
     555             : 
     556      215082 : void raid_data(int nr, int *id, int *ip, int nd, size_t size, void **v)
     557             : {
     558             :         /* enforce limit on size */
     559      215082 :         BUG_ON(size % 64 != 0);
     560             : 
     561             :         /* enforce limit on number of failures */
     562      215082 :         BUG_ON(nr > nd);
     563      215082 :         BUG_ON(nr > RAID_PARITY_MAX);
     564             : 
     565             :         /* enforce order in index vector for data */
     566      215082 :         BUG_ON(nr >= 2 && id[0] >= id[1]);
     567      215082 :         BUG_ON(nr >= 3 && id[1] >= id[2]);
     568      215082 :         BUG_ON(nr >= 4 && id[2] >= id[3]);
     569      215082 :         BUG_ON(nr >= 5 && id[3] >= id[4]);
     570      215082 :         BUG_ON(nr >= 6 && id[4] >= id[5]);
     571             : 
     572             :         /* enforce limit on index vector for data */
     573      215082 :         BUG_ON(nr > 0 && id[nr-1] >= nd);
     574             : 
     575             :         /* enforce order in index vector for parity */
     576      215082 :         BUG_ON(nr >= 2 && ip[0] >= ip[1]);
     577      215082 :         BUG_ON(nr >= 3 && ip[1] >= ip[2]);
     578      215082 :         BUG_ON(nr >= 4 && ip[2] >= ip[3]);
     579      215082 :         BUG_ON(nr >= 5 && ip[3] >= ip[4]);
     580      215082 :         BUG_ON(nr >= 6 && ip[4] >= ip[5]);
     581             : 
     582             :         /* if failed data is present */
     583      215082 :         if (nr != 0)
     584      215080 :                 raid_rec_ptr[nr - 1](nr, id, ip, nd, size, v);
     585      215082 : }
     586             : 

Generated by: LCOV version 1.13